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Abstract. In this paper, the on-line k-truck transportation problem (k-OLTTP) whose
objects are to be transported between the vertices of a given graph on which there are k

mobile trucks to be scheduled is proposed. It is motivated by the research concerning on-line
k-truck problem and on-line transportation problem. The goal is to minimize the makespan
which is consumed to complete some on-line request sequence. Some preliminary knowledge
is introduced and the model of k-OLTTP is established firstly. Two versions of a special case
of k-OLTTP, namely 1-OLTTP, have been studied and some results are obtained. For the
first version, Open-1-OLTTP, a lower bound of competitive ratio 2 is presented and two
optimal on-line algorithms, Reschedule Strategy (RS) and Lay Over Strategy (LOS) respec-
tively, are analyzed. For the second version, Close-1-OLTTP, a lower bound of competitive

ratio 1
2 + 1

2 ·
√

1+ 4
θ
, where θ is the ratio between the time consumed by the loaded truck

and the empty truck to travel the same distance, is also developed and on-line algorithms
RS and LOS are proved to have competitive ratio 2. Finally, some interesting remarks con-
cerning OLTTP and its future research are discussed.
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1. Introduction

In traditional combinatorial optimization, transportation problems in which
objects are to be transported between given sources and destinations in a
metric space are always studied under the assumption that the complete
input for an instance is available for an algorithm to compute a solution.
However, in many cases this off-line optimization does not reflect the real-
world situation. In this paper we consider the following new on-line truck
transportation problem (OLTTP): Objects are to be transported between
the vertices of a given graph. A request consists of the objects to be trans-
ported and the corresponding source and target vertex of the transporta-
tion request. The requests arrive on-line and must be handled by a truck
which starts and ends its work at a designated origin vertex and moves
along the paths in the graph. The truck picks up and drops objects at their
starting points and destinations. We assume that neither the release time of
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the last request nor the number of requests is known in advance. The goal
of OLTTP is to come up with a transportation schedule for the truck in
order to complete the whole request sequence as quickly as possible.

Our investigations of the OLTTP were originally motivated by the
research results of the on-line k-truck problem [1], which is a generaliza-
tion of the famous k-server problem, and on-line transportation problem
[2], which is developed from the performance analysis of a large distribu-
tion center of Herlitz AG, Berlin [3]. The main differences between above
problems and the OLTTP studied in this paper are as follows:

• In the on-line k-truck problem, the goal of optimization is to minimize
the cost of all of the trucks and therefore the request consists of
source and destination vertices. However, the goal of OLTTP is to
minimize the completion time (makespan) and the relevant request
involves three parameters: source and destination vertices and the
request release time.

• In [2], the truck takes the same time on a given distance regardless of
whether it is loaded or empty. In this paper, a more realistic assump-
tion is that the time that a loaded truck takes to cover a certain dis-
tance is θ times the time taken by an empty truck, for some θ �1.

The k-truck problem was proposed in [1]. In that paper, the authors estab-
lished the relevant model and gave some results concerning the competi-
tive ratio of certain on-line algorithms. The result in the paper is that there
exists a c-competitive algorithm for the on-line k-truck problems, where c

is the competitive ratio of some algorithm relevant to the k-server prob-
lem. More results concerning on-line k-truck problem and its variants were
presented in [4]. In [2], the on-line transportation problems concerning the
scheduling of elevators were well investigated and some relevant results
were obtained. Some algorithms which were presented in [2] are employed
to deal with the OLTTP problem. Different competitive ratios concerning
the algorithms are obtained. The lower bounds of the competitive ratios of
two different variants of the OLTTP are also shown. From another point
of view, because the cases in that paper were the relevant special cases
(just let θ = 1), the relevant lower bounds of the competitive ratios are
improved in this paper. In [5–7], some analogies of transportation problems
and various shop scheduling problems were well studied. The main differ-
ence between this present paper and these previous works is that they use
different models, e.g., existing the parameter θ in the model of OLTTP.

Over the past two decades, on-line problems and their competitive anal-
ysis have been the object of considerable interest. The systematic study of
on-line problems started when Sleator and Tarjan [8] suggested compar-
ing an on-line algorithm with an optimal off-line algorithm and Karlin,
Manasse, Rudolph and Sleator [9] coined the term competitive analysis.
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The k-server problem, introduced by Manasse et al. [10], generalizes paging
as well as more general caching problems. The metrical task system, intro-
duced by Borodin et al. [11], can model a wide class of on-line problems.
In past years, many on-line problems were investigated in application areas
such as data structures, distributed data management, scheduling and load
balancing, routing, robotics, financial games, graph theory, and a number
of problems arising in computer systems [12–15].

2. Preliminaries of OLTTP

The k-OLTTP problem can be stated as follows. Given a metric space M,
there are k trucks which move among the points of M in order to serve
requests. Repeatedly, a request (a pair of points x, y ∈ M and a releasing
time t) appears. To serve a request, an empty truck must first move to
x and then move to y with objects from x no earlier than time t . The
goal is to minimize the total time taken (makespan) of all trucks for some
unknown request sequence. In order to present the difference between the
on-line and off-line versions of the k-OLTTP, let us first consider the fol-
lowing problems:

(1) Given a service request sequence, how can we schedule trucks so as
to minimize the makespan?

(2) If the service request is received one by one in the process of service
without any knowledge of the future requests, how can we minimize
the relevant time as much as we can?

Obviously, problem (1) can be solved easily because the request sequence,
namely, the complete information required to make a decision making, is
given in advance. In problem (2), however, in order to minimize the rele-
vant time, the decision maker must make a less informed decision. Upon
receiving a new request, a decision maker must adjust a schedule in the
absence of knowledge of future requests. We refer to problem (1) as an off-
line problem and to problem (2) as an on-line problem with the difference
being whether the service request sequence is known in advance.

The k-OLTTP problem aims at minimizing the makespan of all request
sequences. Because over the same distance the time taken by trucks carry-
ing objects is different from that of trucks that are not carrying objects, we
cannot regard the total distance as the objective of optimization. For sim-
plicity, we assume that over the same distance the time taken by a truck
carrying objects is θ times that of a truck that is not carrying objects.

The Model. Let G= (V , E) denote an edge weighted graph with n ver-
tices, where V is a metric space consisting of n vertices, and E is the set
of all weighted edges. For all x, y, z∈V , we assume that the weight of edge
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(x, y) is denoted by d(x, y) which actually means the shortest path between
x and y. The weights are symmetric, i.e., d(x, y)=d(y, x) and the weights
of edges satisfy the triangle inequality, i.e., d(x, y) + d(x, z) � d(y, z). In
addition, for any point s on the edge (u, v) at distance d(s, u) from u and
distance d(s, v)=d(u, v)−d(s, u) from v, its distance from any other point
x on the graph G is defined by min{d(s, u)+d(u, x), d(s, v)+d(v, x)}. We
assume that k trucks occupying a distinguished origin vertex o∈V at time
t = 0 can be scheduled to complete the whole service. The ith request is
defined as a triplet ri = (ti, ai, bi), where ai, bi ∈V imply that there are some
objects on vertex ai that must be moved to vertex bi . For simplicity, we
assume that the weight of the objects is the same all the time. ti denotes
the release time which indicates the earliest starting time that the request
can be dealt with i is a natural number. A service request sequence R is
defined as an ordered list of service requests, namely R = (r1, . . . , rm). The
on-line k-OLTTP scheduling problem is to devise some algorithms so as to
minimize the makespan under the condition that the requests arrive in an
on-line fashion.
All discussion is based on the following assumptions:

(1) The graph G is connected;
(2) All trucks move at two different constant speed units whether empty

or loaded;
(3) Over the same distance, the time taken by a loaded truck is θ times

that of an empty truck, and θ �1;
(4) Preemption is forbidden: once the truck has picked up the object, it

may not drop it at any place other than its destination.

For a known sequence R = (r1, . . . , rm), let COPT(R) be the optimal make-
span to complete all requests of R. For a new service request, if algorithm
A can schedule without prior information regarding the sequence next to
ri , we call A an on-line algorithm. For on-line algorithm A, if there are
constants α and β satisfying

CA(R)�α ·COPT(R)+β,

then for any possible R, A is called a α-competitive algorithm and α is
called the competitive ratio [16], where CA(R) is the total time taken with
algorithm A to satisfy sequence R.

There are two different versions of OLTTP: (a) the trucks need not
return to the origin vertex after having served the last request of the
sequence; (b) the trucks must return to the origin vertex. The first version
is called the Open-k-OLTTP and the second version is called the Close-k-
OLTTP. These terms were coined in [2]. This paper addresses only cases
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where k =1 and obtains some results. Cases where k >1 remain for further
investigation.

3. Open OLTTP with One Truck

This section presents some results concerning the Open-1-OLTTP: a lower
bound and some competitive algorithms with a good competitive ratio.

3.1. a lower bound of competitive ratio for open-1-olttp

For Open-1-OLTTP, we will present a lower bound to illustrate how an on-
line algorithm performs compared with an optimal off-line algorithm. We
have the following theorem.

THEOREM 3.1. No deterministic algorithm for Open-1-OLTTP can
achieve a competitive ratio c<2.

Proof. The underlying graph G= (V ,E) for the instance of OLTTP con-
sists of a real line with the origin being the vertex o. We denote any vertex
by vi which satisfies that d(o, vi)= i.

Suppose that A is a deterministic on-line algorithm with competitive
ratio c. We can choose the number n so large that θ < (n − 2)/3 and 2 �
2− (4 · θ +1)/(n−1+ θ)>c. Otherwise, the proof will be trivial.

Now the off-line optimal player constructs a request sequence as fol-
lows. At time t0 = 0, the algorithm A is faced with the first request r0 =
(0, v0, v−1). Thus we can claim that at time t1 = n − 1 the on-line truck
cannot be strictly to the right, e.g., on the path from v2θ to +∞ but not
on v2θ . Otherwise, if the truck were to the right, say at distance δ >0
to the right of vertex v2θ , then we could add the request r1 = (n − 1,

v−(n−θ), v−(n−θ+1)). The on-line truck would then need a period of at least
n + 2 · θ + δ to satisfy this request. This would result in a total time of
2 · (n − 1) + 2 · θ + δ + 1. On the other hand, the off-line truck could serve
r0 starting at time t0 and then continue to move to the left until it reached
vertex v−(n−θ) at time n−1 ready to serve the new request r1. Thus the off-
line truck needs time n−1+ θ to serve the requests. We have

CA(r0, r1)

COPT(r0, r1)
= 2 · (n−1)+2 · θ + δ +1

n−1+ θ
>2

which means that A would not be 2-competitive.
We have seen that at time t1 =n−1 the on-line truck is to the left of ver-

tex v2θ . We now add the request r ′
1 = (n − 1, vn−2−θ , vn−1−θ ). To serve this

request needs time at least n − 2 − 2 · θ and then the total time of on-line
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service is at least 2 ·n−3−2 ·θ . On the other hand, the off-line truck serves
the sequence (r0, r

′
1) by handling r0 at time t0 and then immediately mov-

ing to vertex vn−2−θ and reaches it at time n− 1 and is ready to serve r ′
1.

Thus, we have that COPT(r0, r
′
1)=n−1+ θ and then

CA(r0, r
′
1)

COPT(r0, r
′
1)

= 2 ·n−3−2 · θ
n−1+ θ

=2− 4 · θ +1
n−1+ θ

>c.

This contradicts the assumption that A is c-competitive with c<2.

3.2. two optimal on-line algorithms for open-1-olttp

For a request sequence R and a point x, let L(t, x,R) denote the short-
est time taken. This starts at the point x at time t and serves all requests
of R. Obviously, its value is the time difference between its completion
time and the start time t . Intuitively, for t ′ >t,L(t ′, x,R)�L(t, x,R). More-
over, COPT(R)=L(0, o,R) and thus COPT(R)�L(t, o,R) for any time t �0.
In addition, according to the definition of the request, the optimal off-
line truck OPT cannot start to deal with the last request rm = (tm, am, bm)

from R before this request is released. Therefore we get COPT(R) � tm+
θ ·d(am, bm). Finally, for any t �0 the following inequality holds,

COPT(R)�max{L(t, o,R), tm + θ ·d(am, bm)}.
In order to prove the main theorems, we need to prove the following Lem-
mas first.

LEMMA 3.2. For any request sequence R = {r1, . . . , rm}, any request ri =
(ti, ai, bi) from R and any time t � tm, the following inequality holds,

L(t, bi,R\ri)�L(t, o,R)− θ ·d(ai, bi)+d(e, o),

where e is the end point occupied by the truck on the path related to
L(t, o,R) and R\ri denotes the request sequence excluding ri .

Proof. Let S∗ denote an optimal schedule which starts at the origin o

at time t and deals with all requests in R. According to definitions above,
CS∗(R) = L(t, o,R) holds. Obviously, to prove the lemma, it is enough to
construct another schedule S which starts at bi no earlier than time t

and serves all requests in R\ri and the inequality CS(R\ri) � L(t, o,R)

−θ ·d(ai, bi)+d(e, o) holds.
Apparently, different schedules may deal with different requests in differ-

ent orders. Assume S∗ deals with the requests in the order rj1, . . . , rjm such
that ri = rjk. Then construct schedule S which starts at bi at time t and
deals with the request sequence R\ri in the order



COMPETITIVE ANALYSIS FOR THE ON-LINE TRUCK TRANSPORTATION PROBLEM 495

rj (k+1), . . . , rjm, rj1, . . . , rj (k−1).

Note that the most possible on additional consuming time is d(e, o).

LEMMA 3.3. For any request sequence R = {r1, . . . , rm}, let R�tS denote
the subsequence of R in which the release time of the every request is after
tS . Then the following inequality holds

tS +L(tS, o,R�tS )�COPT(R)+dmax,

where dmax =max{d(x, y)}, for any x, y ∈V .
Proof. For any off-line optimal algorithm OPT, according to the defini-

tion of R�tS , all requests in the algorithm must be dealt with after tS . Let
the request rf = (tf , af , bf ) be the first request of R�tS that is deal with.
Then we have tS � tf and

tS +L(tS, o,R�tS )� tf +L(tf , af ,R�tS )+d(o, af )�COPT(R)+dmax.

In [2], the authors presented the on-line algorithms Reschedule and Lay
Over (which they called Replan and Ignore) strategies for some special
cases of OLTTP. In fact, these algorithms are also competitive for the OL-
TTP. Their algorithms are as follows.

Reschedule Strategy (RS): When a new request arrives, the truck always
reformulates a new shortest schedule after completing the current request
(if it is dealing with one). Otherwise it continues to perform the current
schedule. The new shortest schedule takes account of all remaining requests
and starts at the current position and then either stops (for Open-OLTTP)
or returns to the origin vertex (for Close-1-OLTTP).

Note the difference between schedule and request in this algorithm.
The schedule can be adjusted if a new request arrives. The process of
serving a request cannot, however, be interrupted. As for the compet-
itive ratio of the algorithm Reschedule Strategy, we get the following
theorem.

THEOREM 3.4. For Open-1-OLTTP, the algorithm RS is 2-competitive.
Proof. Let R = {r1, . . . , rm} be a request sequence and the latest request

becomes known at time tm. Apparently the following two cases need to be
considered.

Case 1. The truck is empty at time tm. A new optimal schedule is com-
puted which starts at the truck’s current position, denoted by s(tm), and
which deals with all remaining requests. For the new schedule the following
inequality holds

L(tm, s(tm),R)�d(o, s(tm))+L(tm, o,R).
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Therefore,

CRS(R)� tm +d(o, s(tm))+L(tm, o,R)

� tm +d(o, s(tm))+COPT(R)

�2 ·COPT(R)+dmax.

Case 2. The truck is currently serving a request r = (t, a, b). The time
needed to complete the current request is θ · d(s(tm), b). Then a shortest
schedule starting at b and serving all remaining requests is computed which
has a length at most L(tm, b,R\r). Thus in Case 2

CRS(R)� tm + θ ·d(s(tm), b)+L(tm, b,R\r)
� tm + θ ·d(s(tm), b)+L(tm, o,R)− θ ·d(a, b)+d(e, o)

� tm − θ ·d(a, s(tm))+d(e, o)+COPT(R)

� tm +COPT(R)+d(e, o)

�2 ·COPT(R)+dmax.

The second step of this inequality holds for lemma 3.2. For Cases 1 and 2,
let dmax =β, then we have

CRS(R)�2 ·COPT(R)+β.

Now let us see another optimal competitive algorithm for the Open-1-
OLTTP.

Lay Over Strategy (LOS) [2]: The truck always continues to operate
according to the current optimal schedule and lays over all requests that
arrive before it completes all the tasks on the current schedule. The truck
then follows a new optimal schedule that deals with all remaining requests
and performs it immediately to start new circulation.

THEOREM 3.5. For Open-1-OLTTP, the LOS is a competitive algorithm
with competitive ratio 2.

Proof. Two cases need to be considered at tm when the last request rm

becomes known.

Case 1. If the truck is currently idle, it then completes the last task on its
schedule no later than

CLOS(R)� tm +d(s(tm), am)+ θ ·d(am, bm)

�COPT(R)+d(s(tm), am)

�COPT(R)+dmax.
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Case 2. Suppose the truck is following a current schedule S for a subse-
quence RS of R at time tm. Assume S will start at time tS at vertex x and
end at vertex y. The set of requests that are served by Lay Over in its last
schedule is denoted by R�tS . We have

CLOS(R)� tS +L(tS, x,RS)+L(tm, y,R�tS )

� tS +L(tS, o,R�tS )+d(o, y)+L(tS, o,RS)+d(o, x)

�2 ·COPT(R)+d(o, y)+d(o, x)+dmax

�2 ·COPT(R)+3 ·dmax.

For the above two cases, let β =3 ·dmax. Then we get

CRS(R)�2 ·COPT(R)+β.

4. Close OLTTP with One Truck

This section presents some results concerning the Close-1-OLTTP: a lower
bound and some competitive algorithms with a good competitive ratio.

4.1. a lower bound of competitive ratio for close-1-olttp

For Close-1-OLTTP, a lower bound will be presented to illustrate how an
on-line algorithm performs compared with the optimal off-line algorithm.
We have the following theorem.

THEOREM 4.1. No deterministic algorithm for Close-1-OLTTP can achi-

eve a competitive ratio c< 1
2 + 1

2 ·
√

1+ 4
θ
.

Proof. The underlying graph G= (V ,E) for the instance of OLTTP con-
sists of a positive real line with the origin being the vertex o. We denote
any vertex which satisfies d(o, vi)= i by vi .

Suppose that A is a deterministic on-line algorithm with a competitive

ratio c and c< 1
2 + 1

2 ·
√

1+ 4
θ
. Otherwise, there is nothing left to prove.

Now the off-line optimal player constructs a request sequence as follows.
At time t0 =0, the algorithm A receives two requests r1 = (0, o, vn) and r2 =
(0, vn, o). We note that COPT(r1, r2)=2n ·θ and algorithm A must deal with
request r2 at some time T which satisfies the inequality n�T � 2n · θ · c −
n ·θ . In addition, if n�T <n ·θ holds, request r1, which takes at least n ·θ ,
cannot be satisfied by algorithm A before time T . Therefore, CA(r1, r2) �
T +2n · θ +n�2n · (θ +1). Then we have
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CA(r1, r2)

COPT(r1, r2)
� 2n · (θ +1)

2n · θ =1+ 1
θ

� 1
2

+ 1
2

·
√

1+ 4
θ
,

which contradicts the assumption that A is c-competitive with c < 1
2 + 1

2 ·√
1+ 4

θ
. Now we can claim that n · θ �T �2n · θ · c−n · θ .

At time T the off-line player releases requests r3 = (T , vn, vn+1) and
r4 = (T , vn+1, vn). The on-line truck would then need time of at least
CA(r1, r2, r3, r4) � T + n · θ + 2θ + 2n. On the other hand, the off-line
truck could deal with r1 starting at time 0 and then stay at the ver-
tex vn until time T to deal with r3, r4 and finally, r2 at a total cost of
COPT(r1, r2, r3, r4)=T +n · θ +2θ . We get the following inequality

CA(r1, r2, r3, r4)

COPT(r1, r2, r3, r4)
� T +n · θ +2θ +2n

T +n · θ +2θ

�(2n · θ · c−n · θ)+n · θ+2θ+2n

(2n · θ · c−n · θ)+n · θ +2θ
(by T �2n · θ ·c−n·θ)

= n · θ · c+ θ +n

n · θ · c+ θ
,

namely, the following inequality holds

c� n · θ · c+ θ +n

n · θ · c+ θ
.

Considering the case when n → ∞ (maximize the right side of above
inequality) and making some mathematical manipulations, we can get c �
1
2 + 1

2 ·
√

1+ 4
θ

and this contradicts the position that A is a c-competitive

algorithm with competitive ratio c< 1
2 + 1

2 ·
√

1+ 4
θ
.

4.2. rs and los algorithms for close-1-olttp

Similar to that in section 3, for a request sequence R and a point x of
the Close-1-OLTTP, let L∗(t, x,R) denote the shortest time taken which
starts at the point x at time t and deals with all requests of R and ends
at the origin vertex. Its value is the difference between its completion
time and the start time t . Note that the difference of above definition for
L(t, x,R) is that we require the schedule to end at the origin. We also
get the following results: for t ′ > t , we have that L∗(t ′, x,R) � L∗(t, x,R);
COPT(R)=L∗(0, o,R) and thus COPT(R)�L∗(t, o,R) for any time t �0; and
COPT(R) � tm + θ · d(am, bm) + d(bm, o) for the optimal off-line truck OPT
cannot start to deal with the last request rm = (tm, am, bm) from R before
this request is released. Finally, for any t �0 the following inequality holds:
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COPT(R)�max{L∗(t, o,R), tm + θ ·d(am, bm)+d(bm, o)}.

We also have two lemmas similar to lemmas 3.2 and 3.3.

LEMMA 4.2. For Close-1-OLTTP and any request sequence R={r1, . . . , rm},
any request ri = (ti, ai, bi) from R and for any time t � tm, the following
inequality holds:

L∗(t, bi,R\ri)�L∗(t, o,R)− θ ·d(ai, bi)+d(ai, o),

where R\ri denotes the request sequence excluding ri .
Note that lemma 3.3 also holds for the case of Close-1-OLTTP. Now let

us see how to prove that algorithms RS and LOS are also competitive for
the Close-1-OLTTP.

THEOREM 4.3. For Close-1-OLTTP, the algorithm Reschedule Strategy
is 2-competitive.

Proof. Let R = {r1, . . . , rm} be a request sequence and the latest request
becomes known at time tm. The following two cases need to be considered.

Case 1. The truck is empty at time tm. In this case, a new optimal sched-
ule is computed which starts at its current position, denoted by s(tm), deals
with a1l remaining requests and returns to the origin vertex. For the new
schedule the following inequality holds

L∗(tm, s(tm),R)�d(o, s(tm))+L∗(tm, o,R).

Therefore,

CRS(R)� tm +d(o, s(tm))+L∗(tm, o,R)

� tm +d(o, s(tm))+COPT(R)

�2 ·COPT(R)+dmax,

where dmax =max{d(x, y)}, for any x, y ∈V .

Case 2. The truck is currently dealing with a request r = (t, a, b). The time
needed to complete the current request is θ · d(s(tm), b). Then a shortest
schedule which starts at b and deals with all un-served requests and ends at
origin vertex is computed. This schedule takes at most L∗(tm, b,R\r). Thus
in Case 2



500 W. MA ET AL.

CRS(R)� tm + θ ·d(s(tm), b)+L∗(tm, b,R\r)
� tm + θ ·d(s(tm), b)+L∗(tm, o,R)− θ ·d(a, b)+d(a, o)

� tm − θ ·d(a, s(tm))+d(a, o)+COPT(R)

� tm +COPT(R)+d(a, o)

�2 ·COPT(R)+dmax.

The second step of this inequality holds for lemma 4.2. For both cases, 1
and 2, let dmax =β. Then we have

CRS(R)�2 ·COPT(R)+β.

THEOREM 4.4. For Close-1-OLTTP, the Lay Over Strategy is a strictly
competitive algorithm with the competitive ratio 2.

Proof. Two cases need to be considered at tm when the last request rm

becomes known again.

Case 1. If the truck is currently idle, it must stay at the origin vertex and
it completes its last scheduled task no later than

CLOS(R)� tm +d(o, am)+ θ ·d(am, bm)+d(bm, o)

�COPT(R)+d(o, am)

Case 2. If the truck is performing a current schedule S for a subsequence
RS of R at time tm, and assume S will start at time tS . Let R�tS denote the
set of requests that are dealt with by Lay Over in its last schedule. We have

CLOS(R)� tS +L∗(tS, o,RS)+L∗(tm, o,R�tS )

�COPT(R)+L∗(tS, o,R�tS )

�2 ·COPT(R).

Consider these cases together, since d(o, am) � COPT(R) the following
inequality holds for any case

CRS(R)�2 ·COPT(R).

5. Concluding Remarks

In this paper we have studied two versions of the 1-OLTTP problem and
employed the algorithms RS and LOS to get some surprisingly small com-
petitive ratios. We have also obtained the relevant lower bound of their
competitive ratios. From the lower bound of competitive ratio for Open-
1-OLTTP, we know that the algorithms RS and LOS are optimal on-line
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algorithms having a competitive ratio 2. It is very interesting to consider
other variants of OLTTP. For instance, if the on-line player knows the
time when the last request becomes known (but has no information about
the other requests before they are released), a simple strategy (known as
WAIT) can also give a competitive ratio 2. We can describe the WAIT
Strategy as follows:
WAIT Strategy: The on-line truck will do nothing until the last request is
released at time tm. It will then deal with all requests from time tm accord-
ing to an optimal schedule.

For any request sequence R,CWAIT(R) � tm + L(tm, o,RS) � 2 · COPT(R)

holds. Then competitive ratio of 2 is obtained. In addition, if the on-line
player knows only the number of requests, then the player can also use the
WAIT Strategy to get the competitive ratio 2.

For the OLTTP problem, further research could be of interest. For
example, is there a better lower bound for the competitive ratio of Close-
1-OLTTP? It should also be borne in mind that all the results presented
in this paper operate with only one truck. Operating more than one truck
would present further challenges.
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